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Ground-state degeneracy of Potts antiferromagnets on two-dimensional lattices:
Approach using infinite cyclic strip graphs
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The q-state Potts antiferromagnet on a latticeL exhibits nonzero ground-state entropyS05kB ln W for
sufficiently largeq and hence is an exception to the third law of thermodynamics. An outstanding challenge has
been the calculation ofW(sq,q) on the square~sq! lattice. We present here an exact calculation ofW on an
infinite-length cyclic strip of the square lattice, which embodies the expected analytic properties ofW(sq,q).
Similar results are given for the kagome´ lattice. @S1063-651X~99!01010-7#

PACS number~s!: 05.50.1q, 05.20.2y, 64.60.Cn, 75.10.Hk
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Nonzero ground-state entropy,S0Þ0, is an important
subject in statistical mechanics as an exception to the t
law of thermodynamics~e.g., @1#!. This is equivalent to a
ground-state degeneracy per siteW.1, sinceS05kB ln W.
The q-state Potts antiferromagnet~AF! @2,3# exhibits non-
zero ground-state entropy~without frustration! for suffi-
ciently largeq on a given latticeL, or more generally, a
given graphG, and serves as a valuable model for the stu
of this phenomenon. The zero-temperature partition func
of the above-mentionedq-state Potts AF onG satisfies
Z(G,q,T50)PAF5P(G,q), whereP(G,q) is the chromatic
polynomial~in q) expressing the number of ways of colorin
the vertices of the graphG with q colors such that no two
adjacent vertices have the same color@4,5#. Thus,
W($G%,q)5 limn→` P(G,q)1/n, wheren5v(G) is the num-
ber of vertices ofG @6,7# and $G%5 limn→` G. W($G%,q)
has been calculated exactly for the triangular lattice@8# and
various families of graphs@7,9–15#. The special values fo
the square~sq! and kagome´ ~kg! latticesW(sq,3) @16# and
W(kg,3) ~which can be extracted from@17,8#! are also
known. However, aside from the triangular case, the ex
calculation ofW(L,q) for generalq on latticesL of dimen-
sionality d>2 remains an outstanding challenge. In this p
per we report exact calculations ofW on infinite-length,
finite-width strips of the square and kagome´ lattices that ex-
hibit the analytic properties expected for theW functions on
the respective full two-dimensional~2D! lattices and, in this
sense, constitute the closest exact results that one has to
W functions.

Let us describe these analytic properties. Den
limn→` G5$G%. Since P(G,q) is a polynomial, one can
generalizeq from Z1 to R and indeedC. W($G%,q) is a real
analytic function for realq down to a minimum value,
qc($G%) @7,18#. For a given$G%, we denote the continuou
locus of nonanalyticities ofW as B. This locusB forms as
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the accumulation set of the zeros ofP(G,q) ~chromatic ze-
ros ofG) asn→` @19–21,7# and satisfiesB(q)5B(q* ). In
cases whereB serves as a natural boundary, dividing theq
plane into different regions,W has different analytic forms in
these different regions. The pointqc is the maximal point
whereB intersects the real axis, which can occur viaB cross-
ing this axis or via a line segment ofB lying along the axis.
The chromatic polynomialP(G,q) has a general decompo
sition as P(G,q)5c0(q)1( j cj (q)„aj (q)…t j n where the
aj (q) and cj Þ0(q) are independent ofn, while c0(q) may
contain n-dependent terms, such as (21)n, but does not
grow with n like (const)n with uconstu.1, and t j is a
G-dependent constant. A termal (q) is ‘‘leading’’ ~l ! if it
dominates then→` limit of P(G,q). The locusB occurs
where there is an abrupt nonanalytic change inW as the
leading termsal changes; thus the locusB is the solution to
the equation of degeneracy of magnitudes of leading ter
Hence, W is finite and continuous, although nonanalyt
acrossB.

From exact calculations ofW on a number of families of
graphs we have inferred several general results onB: ~i! for
a graphG with well-defined lattice structure, a sufficient con
dition for B to separate theq plane into different regions is
that G contains at least one global circuit, defined as a ro
following a lattice direction, which has the topology of th
circle S1 and a lengthl g.c. that goes to infinity asn→`
@10,22#. For a d-dimensional lattice graph, the existence
global circuits is equivalent to having periodic bounda
conditions~BC’s! in at least one direction. Further,~ii ! the
general condition for a family$G% to have a locusB that is
noncompact~unbounded! in the q plane @11# shows that a
sufficient ~not necessary! condition for $G% to have a com-
pact, bounded locusB is that it is a regular lattice@11,12,15#.
For graphs that~a! contain global circuits,~b! cannot be writ-
ten in the formG5Kp1H @9,23#, and~c! have compactB,
we have observed thatB ~iii ! passes throughq50 and~iv!
crosses the positive real axis, thereby always defining aqc .

From exact calculations ofW for a number of infinite-
length, finite-width~homogeneous! strips of 2D lattices with
3512 © 1999 The American Physical Society
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PRE 60 3513GROUND-STATE DEGENERACY OF POTTS . . .
free boundary conditions in the longitudinal direction~and
free or periodic BC’s in the transverse direction! @10,13#, it is
found that the resultant lociB consist of arcs~and possible
real line segments! that, although compact, do not separa
the q plane into different regions, do not pass throughq50
and, for the arcs, do not necessarily intersect the realq axis.
These calculations showed that as the strip widthLy in-
creases, the complex-conjugate~c.c.! arcs comprisingB tend
to elongate so that the gaps between them decrease, an
left endpoints of the c.c. arcs nearest toq50 move toward
this point, thereby leading to the inference that in the lim
Ly→`, these arcs will close to form one or more region
andB will pass throughq50 and will cross the positive rea
axis at one or more points, thereby defining aqc . In turn,
this motivates the conclusion that properties~i!–~iv! hold for
W(L,q) andB on a latticeL ~in the thermodynamic limit,
independent of the boundary conditions used!. The advan-
tage of cyclic strip graphs is that these properties are pre
for each finiteLy rather than only being approached in t
limit Ly→` as for open strips.

Our method for obtaining exactW functions that exhibit
the analytic properties expected forW on a 2D lattice is as
follows. We calculateP(GL ,q) on Lx3Ly strips of the lat-
tice L with periodic ~i.e., cyclic! BC’s in the longitudinal
(Lx) direction, then takeLx→` and calculateW and the
resultantB. By construction, theseW functions and the asso
ciated loci B embody the four general properties give
above. For each strip, the exterior ofB in the q plane, de-
noted as the regionR1, is the maximal region into which on
can analytically continueW from the real intervalq.qc .
The calculation ofW for a cyclic strip of a given width is
considerably more difficult and the result more complica
than that for the open strip~free Lx BC! of the same width;
the value of the cyclic strips is that the resultantW exhibits
the analytic features of the full 2DW function. The boundary
condition in the transverse direction is not important
these results since the width is finite; for simplicity we u
free transverse BC’s.

We use an extension of the generating function metho
Ref. @10# from open to cyclic strip graphsGL . The generat-
ing function G(GL ,q,x) yields the chromatic polynomial
for finite-length strips ofL as the coefficients in its Taylor
series expansion in the auxiliary variablex aboutx50. Here,
G(GL ,q,x)5N(GL ,q,x)/D(GL ,q,x), whereN andD are
polynomials inx and q ~with no common factors!. The de-
grees of these, as polynomials inx, are denotedj max
5degx(N ) andkmax5degx(D). TheN are not needed her
~they will be given elsewhere! sinceW andB are determined
completely byD, independent ofN @10#. For a particular
GL , writing D5) j 51

j max(12l j x), W is given in regionR1 and
uWu in other regions@24# by W5(lmax)

t and uWu5ulmaxu t,
wherelmax denotes thel in P with maximal magnitude in
the respective region andt5Lx /n51/Ly for the square strip
and 1/5 for the kagome´ strip considered here.

We first consider cyclic strips of the square lattice. F
Ly51, B consists of the unit circleuq21u51 so thatqc
52 andW5q21 for qPR1. For Ly52, from the knownP
@19#, we found thatB separates theq plane into four regions,
qc52, andW5(q223q13)1/2 for qPR1 @7#. We have cal-
culated the generating function for theLy53 case. This has
the
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j max58 andkmax510 and is considerably more complicate
than theLy53 open strip, wherej max51 andkmax52. For
D we find

D„sq~Ly53!,q,x…

5~11bsq,11x1bsq,12x
2!(11bsq,21x1bsq,22x

21bsq,23x
3)

3~11x!@11~q22!2x#@12~q22!x#

3@12~q24!x#@12~q21!x#, ~1!

where

bsq,1152~q22!~q223q15!, ~2!

bsq,125~q21!~q326q2113q211!, ~3!

bsq,2152q229q112, ~4!

bsq,225q4210q3136q2256q131, ~5!

bsq,2352~q21!~q429q3129q2240q122!. ~6!

The boundaryB is shown in Fig. 1. It divides theq plane
into several regions and crosses the positive real axis aqc
52.336 54 andq52. Thus, thisLy53 cyclic strip is the first
one sufficiently wide as to yield a value ofqc aboveq52;
indeed, the value ofqc for this strip is only about 20% below
the value for the full 2D lattice, viz.,qc53 @7#. In regionR1
including the real intervalq.qc ,

W~$Gsq(Ly53)%,qPR1!

5221/3$~q22!~q223q15!1@~q225q17!

3~q425q3111q2212q18!#1/2%1/3. ~7!

At qc , W51.184 87. In the region that includes the real i
terval 2,q,qc , uWu5uq24u1/3. In the region that includes
the real interval 0,q,2 and in the regions centered
roughly q52.460.9i , uWu is given by the respective maxi
mal cube roots of the equationj31bsq,21j

21bsq,22j1bsq,23

FIG. 1. LocusB for W for the`33 cyclic strip of square lattice.
Chromatic zeros forLx520 ~i.e., n560) are also shown.
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50. As an algebraic curve,B has several multiple point
~defined as points where several branches of this curve c
intersect!.

We next consider a cyclic strip of the kagome´ lattice com-
prised ofm hexagons with each pair sharing two triangles
adjacent polygons~as in Fig. 1 in@10# for the open strip!. G
has j max58 and kmax59 as compared withj max51, kmax
52 for the open strip of the same width@10#. We calculate

D„kg~Ly52!,q,x…

5~11bkg,11x1bkg,12x
2!~11bkg,21x1bkg,22x

2!

3~11bkg,31x1bkg,32x
2!@12~q22!x#

3@12~q24!x#@12~q21!~q22!2x#, ~8!

where

bkg,1152~q22!~q426q3114q2216q110!, ~9!

bkg,125~q21!3~q22!3, ~10!

bkg,2152q317q2219q120, ~11!

bkg,225~q21!~q22!3, ~12!

bkg,3151129q12q2, ~13!

bkg,3252~q21!~q22!2. ~14!

Definelkg,j ,65(1/2)@2bkg,j 16(bkg,j 1
2 24bkg,j 2)1/2#. Again,

B divides theq plane into several regions~Fig. 2!. In region
R1 , W is determined bylkg,1,1 ,

W~$Gkg(Ly52)%,q!5221/5~q22!1/5$q426q3114q2

216q1101@q8212q7164q6

2200q51404q42548q31500q2

2292q192#1/2%1/5. ~15!

As is evident from Fig. 2, the value ofqc is within about
10% of the inferred exact valueqc53 for the 2D Kagome´
lattice @14#. It is impressive that an infinite strip of width
ss

s

Ly52 yields aqc this close to the value for the full 2D
lattice.

Another interesting feature of these results is the fact t
the chromatic zeros and their accumulation setB contain
support for Re(q),0. This is in contrast with the situation
for strips with free longitudinal BC’s@10# and provides fur-
ther support for our earlier conjecture that a necessary c
dition for this Re(q),0 feature is that the graph family hav
global circuits.

We have also computedW andB for the cyclic strip of the
triangular strip with Ly52. We find D5(12x)@12(q
22)2x#@11(2q25)x1(q22)2x2#. B separates theq plane
into three regions and crosses the positive real axis aqc
53 and atq52. Theqc value for this strip is one unit les
than the valueqc54 for the full 2D lattice.

Similar calculations can be carried out for infinite-leng
cyclic stripsGL of greater widths. Our method can also b
applied to lattices withd>3. To do this, one would use th
generating function method to calculateP for tubes with
longitudinal periodic BC’s and successively larg
(d21)-dimensional cross sections. We believe that this
plication, as well as that to other 2D lattices, is promising

This research was supported in part by the NSF Grant
PHY-97-22101.

FIG. 2. LocusB for W for `32 cyclic strip of the Kagome´
lattice. Chromatic zeros form510 (n550) are also shown.
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