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Ground-state degeneracy of Potts antiferromagnets on two-dimensional lattices:
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The g-state Potts antiferromagnet on a lattideexhibits nonzero ground-state entrofy=KkgIn W for
sufficiently largeg and hence is an exception to the third law of thermodynamics. An outstanding challenge has
been the calculation d/V(sq,q) on the squarésg) lattice. We present here an exact calculation\bbn an
infinite-length cyclic strip of the square lattice, which embodies the expected analytic propeM&sad).

Similar results are given for the kagortatice.[S1063-651X%99)01010-7

PACS numbgs): 05.50:+q, 05.20-y, 64.60.Cn, 75.10.Hk

Nonzero ground-state entropy,#0, is an important

the accumulation set of the zeros B{G,q) (chromatic ze-

subject in statistical mechanics as an exception to the thirdos of G) asn—« [19-21,7 and satisfied3(q) = B(g*). In

law of thermodynamicge.g.,[1]). This is equivalent to a
ground-state degeneracy per site>1, sinceSy=kgInW.
The g-state Potts antiferromagnéfF) [2,3] exhibits non-
zero ground-state entropywithout frustration for suffi-
ciently largeq on a given latticeA, or more generally, a

cases wherd& serves as a natural boundary, dividing the
plane into different region8y has different analytic forms in
these different regions. The poinat, is the maximal point
whereB intersects the real axis, which can occur Biaross-

ing this axis or via a line segment & lying along the axis.

given graphG, and serves as a valuable model for the studyThe chromatic polynomiaP(G,q) has a general decompo-
of this phenomenon. The zero-temperature partition functiosition as P(G,q)=cq(q)+=;c;(q)(a;(q))'i" where the

of the above-mentionedj-state Potts AF onG satisfies
Z(G,q,T=0)pae=P(G,q), whereP(G,q) is the chromatic

a;(q) andc;.o(q) are independent afi, while co(q) may
contain n-dependent terms, such as-{)", but does not

polynomial(in q) expressing the number of ways of coloring grow with n like (const]' with |consf>1, andt; is a

the vertices of the grap® with q colors such that no two
adjacent vertices have the same colp4,5]. Thus,
W({G},q)=lim,_.. P(G,q)*", wheren=v(G) is the num-
ber of vertices ofG [6,7] and{G}=Ilim,_,..G. W({G},q)
has been calculated exactly for the triangular latfgkand
various families of graph§7,9—-15. The special values for
the square(sg and kagomekg) lattices W(sq,3) [16] and
W(kg,3) (which can be extracted fromil7,8]) are also

G-dependent constant. A teray(q) is “leading” (/) if it

dominates then—oo limit of P(G,q). The locusB occurs
where there is an abrupt nonanalytic changeWnas the
leading terms, changes; thus the locusis the solution to

the equation of degeneracy of magnitudes of leading terms.

Hence, W is finite and continuous, although nonanalytic,
acrosshB.
From exact calculations &fV on a number of families of

known. However, aside from the triangular case, the exadagjraphs we have inferred several general result$ofi) for

calculation ofW(A,q) for generalq on latticesA of dimen-

a graphG with well-defined lattice structure, a sufficient con-

sionalityd=2 remains an outstanding challenge. In this pa-dition for B to separate the plane into different regions is

per we report exact calculations & on infinite-length,
finite-width strips of the square and kagomagtices that ex-
hibit the analytic properties expected for théfunctions on
the respective full two-dimensioné2D) lattices and, in this

that G contains at least one global circuit, defined as a route
following a lattice direction, which has the topology of the
circle St and a length/y . that goes to infinity ag— o

[10,22. For ad-dimensional lattice graph, the existence of

sense, constitute the closest exact results that one has to thegebal circuits is equivalent to having periodic boundary

W functions.

Let us describe these analytic properties.
lim,_,..G={G}. Since P(G,q) is a polynomial, one can
generalizeg from Z, to R and indeed’. W({G},q) is a real
analytic function for realg down to a minimum value,
q.({G}) [7,18]. For a given{G}, we denote the continuous
locus of nonanalyticities o¥V as B. This locus5 forms as
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conditions(BC’s) in at least one direction. Furthe(ij) the

Denoteyeneral condition for a familyG} to have a locud3 that is

noncompactunbounded in the q plane[11] shows that a
sufficient (not necessajycondition for{G} to have a com-
pact, bounded locuB is that it is a regular latticgl1,12,15.
For graphs thata) contain global circuits(b) cannot be writ-
ten in the formG=K,+H [9,23], and(c) have compacs,
we have observed thd (iii) passes through=0 and(iv)
crosses the positive real axis, thereby always definigg.a
From exact calculations dfV for a number of infinite-
length, finite-width(homogeneoysstrips of 2D lattices with
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free boundary conditions in the longitudinal directi¢emd 20
free or periodic BC's in the transverse directi¢h0,13), it is
found that the resultant lod® consist of arc§and possible
real line segmenjsthat, although compact, do not separate
the q plane into different regions, do not pass through0
and, for the arcs, do not necessarily intersect the qeadis.
These calculations showed that as the strip wildthin-
creases, the complex-conjugatec,) arcs comprisings tend 00t
to elongate so that the gaps between them decrease, and tl
left endpoints of the c.c. arcs nearestgte 0 move toward
this point, thereby leading to the inference that in the limit

1.0 |

10}
Ly—, these arcs will close to form one or more regions,
and B will pass throughg=0 and will cross the positive real
axis at one or more points, thereby definingja In turn, oo
this motivates the concl.usmn Fhat propertigs-(iv) hqld 'for 20,5 0.0 10 20 30 20
W(A,q) and B on a latticeA (in the thermodynamic limit, Re(q)

independent of the boundary conditions ysethe advan-

tage of cyclic strip graphs is that these properties are present FIG. 1. LocusB for Wfor thee X3 cyclic strip of square lattice.
for each finiteL, rather than only being approached in the Chromatic zeros fot,=20 (i.e.,n=60) are also shown.

limit Ly,—cc as for open strips. . ) . )

Our method for obtaining exat functions that exhibit Jmax=8 andkpya,= 10 and is considerably more complicated
the analytic properties expected fof on a 2D lattice is as than theL,=3 open strip, wher¢,,=1 andkpa=2. For
follows. We calculateP(G, ,q) onL,XL, strips of the lat- D we find
tice A with periodic (i.e., cyclio BC'’s in the longitudinal
(L,) direction, then takd.,— and calculateW and the D(sqLy=3),9,x)
resultant’3. By construction, thes@/ functions and the asso- = (1+bgq1X+bsq1X?) (1+ Dgg 2X+ g 25+ bgg 23%)
ciated loci B embody the four general properties given
above. For each strip, the exterior Bfin the q plane, de- X(142[1+(a-2)X][1~ (- 2)x]
noted as the regioRl,.is the maximal regior_w into which one X[1—(gq—4)x][1-(q—1)x], (1)
can analytically continu&V from the real intervalg>q..

The calculation ofW for a cyclic strip of a given width is where
considerably more difficult and the result more complicated

than that for the open strifiree L, BC) of the same width; bsg1= —(4—2)(q°~3q+5), 2
the value of the cyclic strips is that the result@texhibits
the analytic features of the full 2B/ function. The boundary Bsg17=(a— 1)(q®—60%+139—11), 3
condition in the transverse direction is not important for
these results since the width is finite; for simplicity we use Dsq 2= 20°—9q+12, 4)
free transverse BC's.

We use an extension of the generating function method of bsq 2= q*— 1093+ 360 — 56q + 31, (5)
Ref.[10] from open to cyclic strip graph&, . The generat-
ing functionT'(G, ,q,x) vields the chromatic polynomials bsg2s=—(A—1)(q*-99°+ 299>~ 409+22).  (6)
for finite-length strips ofA as the coefficients in its Taylor-
series expansion in the auxiliary variableboutx=0. Here, The boundary3 is shown in Fig. 1. It divides thg plane
I'(G,,9,X)=MG,,q,X)/D(G, ,9,x), where N andD are  into several regions and crosses the positive real axig at
polynomials inx and g (with no common facto)s The de- =2.336 54 andj=2. Thus, thid =3 cyclic strip is the first

grees of these, as polynomials i are denotedj,.x one sufficiently wide as to yield a value gf aboveq=2;
=deg(N) andkya=deg(D). The A are not needed here indeed, the value di for this strip is only about 20% below
(they will be given elsewhejesinceW and B are determined the value for the full 2D lattice, vizg.=3 [7]. In regionR;
completely byD, independent of\' [10]. For a particular including the real intervaj>q_,

G, , writing Dzl‘[}’galx(l—)\jx), Wi s given in regiorR; and

|[W| in other regiong24] by W= (\na,0" and |W|=|\ mad"s W({Csqe,-3)a€Ry)

where\ 2 denotes thes in P with maximal magnitude in 13 2 2

the respective region arte=L, /n=1/L for the square strip =2 M(a=2)(a"=3a+5)+1(a"=59+7)

and 1/5 for the kagomstrip considered here. X(g*-5g°+119%— 129+ 8)]*3 3, @)
We first consider cyclic strips of the square lattice. For

Ly=1, B consists of the unit circléq—1|=1 so thatq, At q,, W=1.18487. In the region that includes the real in-

=2 andW=q—1 for ge R;. ForL,=2, from the knowrP terval 2<q<q, |W|=|q—4|*". In the region that includes

[19], we found that3 separates the plane into four regions, the real interval 82q<2 and in the regions centered at

g.=2, andW=(q?—3q+3)*?for ge R, [7]. We have cal- roughly q=2.4+0.9, |W| is given by the respective maxi-

culated the generating function for thg=3 case. This has mal cube roots of the equatiof? + bsq’2§2+ Dsq2£ + Dsq 23
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=0. As an algebraic curve3 has several multiple points
(defined as points where several branches of this curve cross

intersect.
We next consider a cyclic strip of the kagotagtice com-

prised ofm hexagons with each pair sharing two triangles as

adjacent polygongas in Fig. 1 in[10] for the open strip I'
hasjma=8 andky,.,=9 as compared with .= 1, Kmax
=2 for the open strip of the same widfh0]. We calculate

D(kg( Ly: 2)1q!X)
= (14 byg 15X+ big 1% (14 byg 23X+ bieg 2%%)

X (14 byg 3X+ big 3x?)[1— (g —2)X]

X[1=(q=4)x][1-(q—1)(q—2)%], (8)

where
bg11= —(q—2)(q*—60°+ 149°~ 16+ 10),  (9)
brg.12=(a—1)%(q—2)?, (10)
byg21= —G°+ 79>~ 199+ 20, (12)
byg22=(q—1)(a—2)°, (12
byg.31= 11— 99+ 202, (13
byg,a=—(d—1)(q—2)%. (14

Define Aygj « = (1/2)[ — byg 1= (bFy j1— 4big 2) 1. Again,
B divides theq plane into several regior(ig. 2). In region
Ry, Wis determined bW,g; ; ,

W({Gkg<Ly=2)}.q)=2‘1’5(q—2)”5{q4— 60°+ 149°
—16q+10+[q®—12q” + 649°
—2009°+ 404q*— 54893+ 50002
— 29+ 92)V2 15, (15)

As is evident from Fig. 2, the value @, is within about
10% of the inferred exact valug,=3 for the 2D Kagome
lattice [14]. It is impressive that an infinite strip of width
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FIG. 2. LocusB for W for «x2 cyclic strip of the Kagome
lattice. Chromatic zeros fan=10 (n=50) are also shown.

L,=2 yields aq, this close to the value for the full 2D
lattice.

Another interesting feature of these results is the fact that
the chromatic zeros and their accumulation Betontain
support for Re)<0. This is in contrast with the situation
for strips with free longitudinal BC'$10] and provides fur-
ther support for our earlier conjecture that a necessary con-
dition for this Re@) <0 feature is that the graph family have
global circuits.

We have also computedy and B for the cyclic strip of the
triangular strip with L,=2. We find D=(1-x)[1—(q
—2)%x][1+(29—-5)x+(q—2)?x?]. B separates the plane
into three regions and crosses the positive real axig.at
=3 and atq=2. Theq, value for this strip is one unit less
than the valuay.=4 for the full 2D lattice.

Similar calculations can be carried out for infinite-length
cyclic stripsG, of greater widths. Our method can also be
applied to lattices witld=3. To do this, one would use the
generating function method to calculake for tubes with
longitudinal periodic BC’s and successively larger
(d—1)-dimensional cross sections. We believe that this ap-
plication, as well as that to other 2D lattices, is promising.

This research was supported in part by the NSF Grant No.
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