ARTICLES

Ground-state degeneracy of Potts antiferromagnets on two-dimensional lattices: Approach using infinite cyclic strip graphs

Robert Shrock^{1,*} and Shan-Ho Tsai^{2,†}

1 *Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840* 2 *Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602*

(Received 25 February 1999)

The *q*-state Potts antiferromagnet on a lattice Λ exhibits nonzero ground-state entropy $S_0 = k_B \ln W$ for sufficiently large *q* and hence is an exception to the third law of thermodynamics. An outstanding challenge has been the calculation of $W(\text{sq},q)$ on the square (sq) lattice. We present here an exact calculation of *W* on an infinite-length cyclic strip of the square lattice, which embodies the expected analytic properties of *W*(sq,*q*). Similar results are given for the kagomé lattice. $[$1063-651X(99)01010-7]$

PACS number(s): $05.50.+q$, $05.20.-y$, $64.60.Cn$, $75.10.Hk$

Nonzero ground-state entropy, $S_0 \neq 0$, is an important subject in statistical mechanics as an exception to the third law of thermodynamics $(e.g., [1])$. This is equivalent to a ground-state degeneracy per site $W>1$, since $S_0 = k_B \ln W$. The *q*-state Potts antiferromagnet (AF) [2,3] exhibits nonzero ground-state entropy (without frustration) for sufficiently large q on a given lattice Λ , or more generally, a given graph *G*, and serves as a valuable model for the study of this phenomenon. The zero-temperature partition function of the above-mentioned *q*-state Potts AF on *G* satisfies $Z(G,q,T=0)_{PAF} = P(G,q)$, where $P(G,q)$ is the chromatic polynomial (in q) expressing the number of ways of coloring the vertices of the graph *G* with *q* colors such that no two adjacent vertices have the same color $[4,5]$. Thus, $W({G}, q) = \lim_{n \to \infty} P(G, q)^{1/n}$, where $n = v(G)$ is the number of vertices of *G* [6,7] and $\{G\} = \lim_{n \to \infty} G$. *W*($\{G\}, q$) has been calculated exactly for the triangular lattice $[8]$ and various families of graphs $[7,9-15]$. The special values for the square $({\rm sq})$ and kagome^{$({\rm kg})$} lattices $W({\rm sq},3)$ [16] and $W(\text{kg},3)$ (which can be extracted from [17,8]) are also known. However, aside from the triangular case, the exact calculation of $W(\Lambda, q)$ for general q on lattices Λ of dimensionality $d \geq 2$ remains an outstanding challenge. In this paper we report exact calculations of *W* on infinite-length, finite-width strips of the square and kagome^s lattices that exhibit the analytic properties expected for the *W* functions on the respective full two-dimensional $(2D)$ lattices and, in this sense, constitute the closest exact results that one has to these *W* functions.

Let us describe these analytic properties. Denote $\lim_{n\to\infty} G = \{G\}$. Since *P*(*G*,*q*) is a polynomial, one can generalize *q* from \mathbb{Z}_+ to R and indeed C. $W({G}, q)$ is a real analytic function for real *q* down to a minimum value, $q_c({G})$ [7,18]. For a given ${G}$, we denote the continuous locus of nonanalyticities of *W* as β . This locus β forms as ros of *G*) as $n \rightarrow \infty$ [19–21,7] and satisfies $B(q) = B(q^*)$. In cases where B serves as a natural boundary, dividing the *q* plane into different regions, *W* has different analytic forms in these different regions. The point q_c is the maximal point where β intersects the real axis, which can occur via β crossing this axis or via a line segment of β lying along the axis. The chromatic polynomial $P(G,q)$ has a general decomposition as $P(G,q) = c_0(q) + \sum_j c_j(q) (a_j(q))^{t_j n}$ where the $a_j(q)$ and $c_{j\neq0}(q)$ are independent of *n*, while $c_0(q)$ may contain *n*-dependent terms, such as $(-1)^n$, but does not grow with *n* like $(\text{const})^n$ with $|\text{const}|>1$, and t_i is a *G*-dependent constant. A term $a_{\ell}(q)$ is "leading" (ℓ) if it dominates the $n \rightarrow \infty$ limit of $P(G,q)$. The locus B occurs where there is an abrupt nonanalytic change in *W* as the leading terms a_ℓ changes; thus the locus β is the solution to the equation of degeneracy of magnitudes of leading terms. Hence, *W* is finite and continuous, although nonanalytic, across B.

the accumulation set of the zeros of $P(G,q)$ (chromatic ze-

From exact calculations of *W* on a number of families of graphs we have inferred several general results on \mathcal{B} : (i) for a graph *G* with well-defined lattice structure, a sufficient condition for β to separate the q plane into different regions is that *G* contains at least one global circuit, defined as a route following a lattice direction, which has the topology of the circle S^1 and a length $\ell_{g.c.}$ that goes to infinity as $n \rightarrow \infty$ [10,22]. For a *d*-dimensional lattice graph, the existence of global circuits is equivalent to having periodic boundary conditions $(BC's)$ in at least one direction. Further, (ii) the general condition for a family ${G}$ to have a locus B that is noncompact (unbounded) in the *q* plane [11] shows that a sufficient (not necessary) condition for ${G}$ to have a compact, bounded locus B is that it is a regular lattice [11,12,15]. For graphs that (a) contain global circuits, (b) cannot be written in the form $G = K_p + H$ [9,23], and (c) have compact B, we have observed that β (iii) passes through $q=0$ and (iv) crosses the positive real axis, thereby always defining a q_c .

From exact calculations of *W* for a number of infinitelength, finite-width (homogeneous) strips of 2D lattices with

^{*}Electronic address: robert.shrock@sunysb.edu

[†] Electronic address: tsai@hal.physast.uga.edu

free boundary conditions in the longitudinal direction (and free or periodic BC's in the transverse direction) $\lfloor 10,13 \rfloor$, it is found that the resultant loci β consist of arcs (and possible real line segments) that, although compact, do not separate the *q* plane into different regions, do not pass through $q=0$ and, for the arcs, do not necessarily intersect the real *q* axis. These calculations showed that as the strip width L_v increases, the complex-conjugate $(c.c.)$ arcs comprising β tend to elongate so that the gaps between them decrease, and the left endpoints of the c.c. arcs nearest to $q=0$ move toward this point, thereby leading to the inference that in the limit $L_v \rightarrow \infty$, these arcs will close to form one or more regions, and B will pass through $q=0$ and will cross the positive real axis at one or more points, thereby defining a q_c . In turn, this motivates the conclusion that properties (i) – (iv) hold for $W(\Lambda, q)$ and B on a lattice Λ (in the thermodynamic limit, independent of the boundary conditions used. The advantage of cyclic strip graphs is that these properties are present for each finite L_y rather than only being approached in the limit $L_v \rightarrow \infty$ as for open strips.

Our method for obtaining exact *W* functions that exhibit the analytic properties expected for *W* on a 2D lattice is as follows. We calculate $P(G_\Lambda, q)$ on $L_x \times L_y$ strips of the lattice Λ with periodic (i.e., cyclic) BC's in the longitudinal (L_x) direction, then take $L_x \rightarrow \infty$ and calculate *W* and the resultant B. By construction, these *W* functions and the associated loci β embody the four general properties given above. For each strip, the exterior of β in the *q* plane, denoted as the region R_1 , is the maximal region into which one can analytically continue *W* from the real interval $q > q_c$. The calculation of *W* for a cyclic strip of a given width is considerably more difficult and the result more complicated than that for the open strip (free L_x BC) of the same width; the value of the cyclic strips is that the resultant *W* exhibits the analytic features of the full 2D *W* function. The boundary condition in the transverse direction is not important for these results since the width is finite; for simplicity we use free transverse BC's.

We use an extension of the generating function method of Ref. [10] from open to cyclic strip graphs G_Λ . The generating function $\Gamma(G_\Lambda, q, x)$ yields the chromatic polynomials for finite-length strips of Λ as the coefficients in its Taylorseries expansion in the auxiliary variable *x* about $x=0$. Here, $\Gamma(G_{\Lambda}, q, x) = \mathcal{N}(G_{\Lambda}, q, x)/\mathcal{D}(G_{\Lambda}, q, x)$, where N and D are polynomials in x and q (with no common factors). The degrees of these, as polynomials in x , are denoted j_{max} $=$ deg_{*x*}(N) and k_{max} = deg_{*x*}(D). The N are not needed here (they will be given elsewhere) since *W* and β are determined completely by D , independent of \mathcal{N} [10]. For a particular G_{Λ} , writing $\mathcal{D} = \prod_{j=1}^{j_{max}} (1 - \lambda_j x)$, *W* is given in region R_1 and |*W*| in other regions [24] by $W = (\lambda_{max})^t$ and $|W| = |\lambda_{max}|^t$, where λ_{max} denotes the λ in *P* with maximal magnitude in the respective region and $t = L_x / n = 1/L_y$ for the square strip and $1/5$ for the kagomé strip considered here.

We first consider cyclic strips of the square lattice. For $L_v=1$, B consists of the unit circle $|q-1|=1$ so that q_c $=$ 2 and $W = q - 1$ for $q \in R_1$. For $L_y = 2$, from the known *P* [19], we found that B separates the q plane into four regions, $q_c=2$, and $W=(q^2-3q+3)^{1/2}$ for $q \in R_1$ [7]. We have calculated the generating function for the $L_y=3$ case. This has

FIG. 1. Locus β for *W* for the $\infty \times 3$ cyclic strip of square lattice. Chromatic zeros for $L_x=20$ (i.e., $n=60$) are also shown.

 j_{max} =8 and k_{max} =10 and is considerably more complicated than the $L_y=3$ open strip, where $j_{max}=1$ and $k_{max}=2$. For D we find

$$
\mathcal{D}(sq(L_y=3), q, x)
$$

= $(1 + b_{sq,11}x + b_{sq,12}x^2)(1 + b_{sq,21}x + b_{sq,22}x^2 + b_{sq,23}x^3)$

$$
\times (1 + x)[1 + (q - 2)^2x][1 - (q - 2)x]
$$

$$
\times [1 - (q - 4)x][1 - (q - 1)x],
$$
 (1)

where

$$
b_{\text{sq},11} = -(q-2)(q^2 - 3q + 5),\tag{2}
$$

$$
b_{sq,12} = (q-1)(q^3 - 6q^2 + 13q - 11),
$$
 (3)

$$
b_{sq,21} = 2q^2 - 9q + 12,\tag{4}
$$

$$
b_{sq,22} = q^4 - 10q^3 + 36q^2 - 56q + 31,\tag{5}
$$

$$
b_{\text{sq,23}} = -(q-1)(q^4 - 9q^3 + 29q^2 - 40q + 22). \tag{6}
$$

The boundary β is shown in Fig. 1. It divides the q plane into several regions and crosses the positive real axis at q_c $=$ 2.336 54 and *q* = 2. Thus, this *L_y*=3 cyclic strip is the first one sufficiently wide as to yield a value of q_c above $q=2$; indeed, the value of q_c for this strip is only about 20% below the value for the full 2D lattice, viz., $q_c = 3$ [7]. In region R_1 including the real interval $q > q_c$,

$$
W({Gsq(Ly=3)}, q \in R1)
$$

=2^{-1/3}{(q-2)(q²-3q+5)+[(q²-5q+7)
×(q⁴-5q³+11q²-12q+8)]^{1/2}}^{1/3}. (7)

At q_c , $W=1.184 87$. In the region that includes the real interval $2 < q < q_c$, $|W| = |q-4|^{1/3}$. In the region that includes the real interval $0 < q < 2$ and in the regions centered at roughly $q=2.4\pm0.9i$, |*W*| is given by the respective maximal cube roots of the equation $\xi^3 + b_{\text{sq,}21}\xi^2 + b_{\text{sq,}22}\xi + b_{\text{sq,}23}$ $=0$. As an algebraic curve, β has several multiple points (defined as points where several branches of this curve cross intersect).

We next consider a cyclic strip of the kagomé lattice comprised of *m* hexagons with each pair sharing two triangles as adjacent polygons (as in Fig. 1 in $[10]$ for the open strip). Γ has $j_{max}=8$ and $k_{max}=9$ as compared with $j_{max}=1$, k_{max} $=$ 2 for the open strip of the same width [10]. We calculate

$$
\mathcal{D}(\text{kg}(L_y=2), q, x)
$$
\n
$$
= (1 + b_{\text{kg},11}x + b_{\text{kg},12}x^2)(1 + b_{\text{kg},21}x + b_{\text{kg},22}x^2)
$$
\n
$$
\times (1 + b_{\text{kg},31}x + b_{\text{kg},32}x^2)[1 - (q-2)x]
$$
\n
$$
\times [1 - (q-4)x][1 - (q-1)(q-2)^2x], \quad (8)
$$

where

$$
b_{kg,11} = -(q-2)(q^4 - 6q^3 + 14q^2 - 16q + 10),
$$
 (9)

$$
b_{\mathrm{kg},12} = (q-1)^3 (q-2)^3,\tag{10}
$$

$$
b_{\mathrm{kg},21} = -q^3 + 7q^2 - 19q + 20,\tag{11}
$$

$$
b_{\mathrm{kg},22} = (q-1)(q-2)^3,\tag{12}
$$

$$
b_{\text{kg},31} = 11 - 9q + 2q^2,\tag{13}
$$

$$
b_{\mathrm{kg},32} = -(q-1)(q-2)^2. \tag{14}
$$

Define $\lambda_{kg, j, \pm} = (1/2)[-b_{kg, j1} \pm (b_{kg, j1}^2 - 4b_{kg, j2})^{1/2}]$. Again, B divides the q plane into several regions (Fig. 2). In region R_1 , *W* is determined by $\lambda_{kg,1,+}$,

$$
W({G_{\text{kg}(L_y=2)}}, q) = 2^{-1/5}(q-2)^{1/5}{q^4 - 6q^3 + 14q^2}
$$

- 16q + 10 + $[q^8 - 12q^7 + 64q^6$
- 200q⁵ + 404q⁴ - 548q³ + 500q²
- 292q + 92]^{1/2}}^{1/5}. (15)

As is evident from Fig. 2, the value of q_c is within about 10% of the inferred exact value q_c =3 for the 2D Kagome^{ϵ} lattice $[14]$. It is impressive that an infinite strip of width

FIG. 2. Locus B for W for $\infty \times 2$ cyclic strip of the Kagome^{\in} lattice. Chromatic zeros for $m=10$ ($n=50$) are also shown.

 $L_v=2$ yields a q_c this close to the value for the full 2D lattice.

Another interesting feature of these results is the fact that the chromatic zeros and their accumulation set β contain support for $\text{Re}(q) \leq 0$. This is in contrast with the situation for strips with free longitudinal BC's $[10]$ and provides further support for our earlier conjecture that a necessary condition for this $\text{Re}(q)$ < 0 feature is that the graph family have global circuits.

We have also computed W and B for the cyclic strip of the triangular strip with $L_y=2$. We find $\mathcal{D}=(1-x)[1-(q)$ $(-2)^2x$ $[1+(2q-5)x+(q-2)^2x^2]$. B separates the *q* plane into three regions and crosses the positive real axis at q_c $=$ 3 and at $q=$ 2. The q_c value for this strip is one unit less than the value q_c =4 for the full 2D lattice.

Similar calculations can be carried out for infinite-length cyclic strips G_Λ of greater widths. Our method can also be applied to lattices with $d \geq 3$. To do this, one would use the generating function method to calculate *P* for tubes with longitudinal periodic BC's and successively larger $(d-1)$ -dimensional cross sections. We believe that this application, as well as that to other 2D lattices, is promising.

This research was supported in part by the NSF Grant No. PHY-97-22101.

- [1] M. Aizenman and E. H. Lieb, J. Stat. Phys. 24, 279 (1981); Y. Chow and F. Y. Wu, Phys. Rev. B 36, 285 (1987).
- [2] R. B. Potts, Proc. Cambridge Philos. Soc. 48, 106 (1952).
- $[3]$ F. Y. Wu, Rev. Mod. Phys. **54**, 235 (1982) ; **55**, 315 (E) (1983) .
- [4] R. C. Read, J. Comb. Theory, Ser. A 4, 52 (1968); R. C. Read and W. T. Tutte, in *Selected Topics in Graph Theory, 3*, edited by L. W. Beineke and R. J. Wilson (Academic Press, New York, 1988).
- [5] The minimum number of colors needed for this coloring of *G* is called its chromatic number, $\chi(G)$.
- [6] At certain special points q_s [typically $q_s = 0,1, \ldots, \chi(G)$], one has the noncommutativity of limits $\lim_{q \to q_s} \lim_{n \to \infty}$

 $P(G,q)^{1/n} \neq \lim_{n \to \infty} \lim_{q \to q_s} P(G,q)^{1/n}$, and hence it is necessary to specify the order of the limits in the definition of $W({G}, q_s)$ [7]. As in Ref. [7], we shall use the first order of limits here; this has the advantage of removing certain isolated discontinuities in *W*.

- [7] R. Shrock and S.-H. Tsai, Phys. Rev. E 55, 5165 (1997).
- [8] R. J. Baxter, J. Phys. A **20**, 5241 (1987).
- [9] R. Shrock and S.-H. Tsai, Phys. Rev. E 56, 1342 (1997).
- [10] M. Rocek, R. Shrock, and S.-H. Tsai, Physica A 252, 505 (1998); **259**, 367 (1998).
- [11] R. Shrock and S.-H. Tsai, Phys. Rev. E 56, 3935 (1997); 56, 4111 (1997).
- [12] R. Shrock and S.-H. Tsai, J. Phys. A 31, 9641 (1998).
- [13] R. Shrock and S.-H. Tsai, Physica A **259**, 315 (1998).
- [14] R. Shrock and S.-H. Tsai, Phys. Rev. E 58, 4332 (1998); e-print cond-mat/9808057. In the absence of exact solutions, these values of $W(\Lambda, q)$ are determined by Monte Carlo measurements and large-*q* series.
- [15] R. Shrock and S.-H. Tsai, Physica A **265**, 186 (1999); J. Phys. A 32, L195 (1999).
- [16] E. H. Lieb, Phys. Rev. 162, 162 (1967).
- [17] R. J. Baxter, J. Math. Phys. 11, 784 (1970).
- [18] R. Shrock and S.-H. Tsai, J. Phys. A 30, 495 (1997).
- [19] N. L. Biggs, R. M. Damerell, and D. A. Sands, J. Comb. Theory, Ser. B 12, 123 (1972); N. L. Biggs and G. H. Meredith, *ibid.* **20**, 5 (1976).
- [20] S. Beraha, J. Kahane, and N. Weiss, J. Comb. Theory, Ser. B **28**, 52 (1980).
- [21] R. C. Read and G. F. Royle, in *Graph Theory, Combinatorics, and Applications* (Wiley, New York, 1991), Vol. 2, p. 1009.
- [22] Some families of graphs that do not have regular lattice directions have noncompact loci β that separate the q plane into different regions $[11,12,15]$.
- [23] The complete graph on *p* vertices, denoted K_p , is the graph in which every vertex is adjacent to every other vertex. The "join" of graphs G_1 and G_2 , denoted $G_1 + G_2$, is defined by adding bonds linking each vertex of G_1 to each vertex in G_2 . Graph families with β not including $q=0$ are given in $[9,11,12,15]$.
- [24] For real $q < q_c({G})$, as well as other regions of the *q* plane that cannot be reached by analytic continuation from the real interval $q > q_c({G})$, one can only determine the magnitude $|W({G}, q)|$ unambiguously [7].